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Abstract 

In this paper, a number of equations based on the sparse- 
density principle [Verwer, Krabbendam & Kroon (1991). 
Acta Cryst. A47, 143--144] are given. The corresponding 
joint probability distributions (j.p.d.'s) are derived, both 
with the assumption of independent atoms and without. 
It is concluded that the sparse-density principle is equiv- 
alent to the assumption of independent atoms, which 
leads to the neglect of n-atom interactions for which 
r I 4- r 2 4- . . .  + r ,  - 0 (mod 1), which would influence 
the nth-order moments that appear in the j.p.d. 

1. Introduction 

The sparse-density principle states that, as the atomic 
electron-density function is concentrated around a lim- 
ited number of discrete points (the atomic positions), a 
relatively large volume of the unit cell has small or zero 
density. This property of the electron-density function 
can be recast into a mathematical form by noting that, as 
a consequence of this property, the chance is small that 
the electron-density function and the electron-density 
function inverted through an arbitrarily chosen origin 
will exhibit a large degree of overlap. This means that 
p ( r ) p ( - r )  _~ 0, i.e. is likely to be zero. An obvious 
exception is the case that the chosen origin coincides 
with an inversion centre in a centrosymmetric structure. 
This assumption about the shape of the electron-density 
function, together with the assumption of non-overlap 
of atoms, leads to the sparse-density equations, which 
are convolution equations between the structure-factor 
components. These sparse-density equations are closely 
related to the less-restrictive Sayre equation (Sayre, 
1952). The algebraic derivation of the sparse-density 
equations was given by Fan (1965). Further investiga- 
tions were instigated by Verwer, Krabbendam & Kroon 
(1991), who employed one of the equations to find 
a solution for the phase ambiguity in the method of 
single-wavelength anomalous diffraction. The algebraic 
derivation of one of the sparse-density equations is given 
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in equation (5) of their paper: 

a h = - 2 [ f ( h ) / 2 f ( h ) V  ] ~ BkBh_k ,  
k 

which is based on the relation 

E B k B h - k  : -- V2"~"h {([p(r) - p ( - r ) ] / 2 )  2 } 
k 

= - ½[2f(h)V/f(h)]Ah 

+ V2~h{p(r)p(-r)/2}. 

(1) 

(2) 

In (1) and (2), A and B are the components of the 
structure factors, p is the electron density, V is the 
cell volume and 5 r denotes the Fourier transformation. 
The symbols f and 2f refer to the scattering factors 
of the normal and squared atomic electron densities, 
respectively. The validity of (1) was shown by Verwer, 
Krabbendam & Kroon (1991) by application to data of 
four small-molecule crystal structures. A paper demon- 
strating the strength of the sparse-density equations at 
different resolution levels and the application to single- 
wavelength anomalous scattering is in preparation. 

The last term in (2) depends on the overlap between 
the structure and its inverse and may be considered negli- 
gible according to the sparse-density principle, reducing 
(2) to (1). If part of the structure, however, exhibits exact 
centrosymmetry and the sparse-density principle applies 
to the rest of the structure, this last term can be written 

vEjr. {p(r )p(- r )  /2 } = (V2 /2)3rh {[p'(r)]2 } 
1 / f 

--  _ 2 ~"~ - AkAh_  k 
k 

= l[2f(h)V/f(h)]A' h, (3) 

where the quantities that only depend on the centric part 
of the structure have been written p' and A'. Thus, (1) 
can be written 

Ah -- A t = -2 [ f (h ) /2 f (h )V  ] ~ BkBh_ k. (4) 
k 

Along the same lines, it can be derived that 

A h -l- A'h = 2[f(h)/J(h)V] ~, Ak.Ah_ k. (5) 
k 
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It can also be shown that, for point atoms, i.e. using 
quasi-normalized structure factors, the sparse-density 
principle is exactly valid (the electron-density function 
does not occupy any space at all), apart from the possible 
presence of partial exact centrosymmetry. If then the 
contribution of the centrosymmetric substructure to the 
structure factor is taken into account, the following 
equations result: 

The Fourier transform of P(X i, X2) is the character- 
istic function 

oo  o o  

Q(tl,t2) = f f P(XI,X2) 
- - 0 0  - - 0 0  

x exp{i( t ,X,  +/2X2)} dXi dX 2 

= (exp{i( t ,X 1 + t2X2)}), (8) 

(BkBh-k)k : -- ~Nl - I / 2 ( A  h - A~) 

(AkAh_k)  k -- 1N-I/2(A h + AIh). 

(6) in which t 1, t 2 are  carrying variables. The quantities A h 
and B h can both be expressed as a sum over a large 

(7) number of random variables x u, Xzj: 

In (6) and (7), A and B are the components of the 
normalized structure factors and A~ refers to the nor- 
malized structure factor of the centrosymmetric part of 
the structure (i.e. centrosymmetric relative to the chosen 
origin). As a consequence of the algebraic nature of the 
derivation, the average is to be taken over an infinite 
range of k values. 

A statistical derivation of (6) and (7) has been given 
by Karle (1966) for the case that A~ = 0, assuming 
that no pseudo-centrosymmetric substructure (relative to 
the chosen origin) is present. His derivation was based 
on the expressions for the joint probability distributions 
(j.p.d.'s) P(X, Y) of B k, Ba_ k and A k, An_ k, respectively. 
Because of the statistical nature of this derivation, re- 
strictions on the range of k can be applied; however, 
restrictions on the range of k will affect the standard 
deviation in the result. It follows from this that the 
sparse-density principle, or the expectation that exact 
pseudo-centrosymmetry is absent for the case of point 
atoms, is not new information that could be applied 
to improve the existing expressions for the j.p.d.'s of 
structure factors: the principle must already have been 
introduced in the derivations. The point of introduction 
of the sparse-density principle into the derivation is 
obvious: it is where the characteristic function, con- 
taining information on all atomic coordinates, is written 
as a product of atomic characteristic functions. This is 
only justified if the atomic contributions to the structure 
factors are mutually independent. 

The purpose of this paper is to study the relation 
between the sparse-density principle and the concept 
of independent atoms, as used in the derivation of the 
j.p.d.'s of structure factors. We will do this by rederiving 
the j.p.d.'s of structure-factor components (A's and B's), 
without writing the characteristic function as a product of 
atomic characteristic functions, i.e. without introducing 
the notion of independent atoms. 

2. Theory 

As an example of the way expressions for the j.p.d.'s 
of structure-factor components are derived, we take the 
derivation of P(X~, X2) of A h, B h. 

N 
A h : N-l~ 2 ~_, X l j  

j= l  
N 

B h = N-I~ 2 ~_, x2j, 
j= l  

(9) 

in which 

Xlj = cos(27rh • r j) 

x2j = sin(27rh • r j). 
(lO) 

Introduction of X I " - -  N -I /2  ~,jN=I Xlj and X 2 = 

N -  1/2 ~,jN=l x2 j into (8) gives 

N-l~2 Q(t. , t2) = exp i t I Y]x i j  
j = l  

+t2N-l/2j~=lX2j]} I 

:~=~lexp{iN-l/a[tlXlj+t2x2j]}) • ( l l )  

At this point, we do not assume that the random variables 
Xlj and x2j ( j  =.  1 . . . . .  N) are independent [this would 
mean interchanging the product and averaging operators 
in (11)] but instead we proceed with expanding (11) 
into a Taylor series right away: 

Q(t, , t2) = 1 +  E E \ ~ . ~ 2  v. 
j=  ! vt =0 v2=0 

nOt Vl - - V 2 = 0  
"1 

" '  ~ l j ' 2  ~2j]  ) "  (12) 

Multiplication of the series, neglecting terms with pow- 
ers v l, v 2 for which v I + v 2 > 2, leads to 

Q 'I '2' 
j= l  
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N 

+ it2N-t/2(j~=lX2J} 

-(1/2N)t{l<{j=~x,j} 2 ) 

N 2 

-(1/2N)~({j~=lx2j} ) 

- (ttt2/N) x2j2 j i x l j t  " = 
l 1 

= 1 + itlm m + it2mol - ½~m20 
- -  l ~ m o 2  - -  t l t 2 m l i  

with the moments m,,,,,2 defined as 

~ <{N_i/2j l~= 1 ~Vl{N_ my, v2 X l j  I j 

= <x?x?>.  

(13) 

i/2 ~ x2j2 
J2= I 

(14) 

Assuming ml0 = m 0 i  " -  0 and introducing the approxi- 
mation 1 + z "2_ exp z, we may write (13) as 

Q(ti,t2) "2_ e x p { - l ( ~ m 2 0  4- ~m02 4- 2tlt2mll)}. (15) 

The inverse Fourier transform of (15) then results in the 
desired j.p.d: 

P ( X i , X 2 )  = ( 2 7 r ) - l m ~ / 2 m ~ i / 2  exp{_(X~/2m2o) 
- (XX)/2mo2) 4- (mll/m2omo2)XiX2}. 

(16) 

Equation (16) is valid for any pair of quantities, with 
actual values X l, X 2, which can be written as a sum of 
random variables, as in (9). For every specific case of 
Xi, X2, it suffices to specify the moments mE0, m02, m ll. 

To evaluate P(Xi,X2) of Ah, B h, we calculate the 
moments via (14) using the expressions for xlj and x2j 
given by (10). Then, 

m20 = (A 2} 

= N-i ( [j=~l COS(27rh " rj)] 21 

N N 

= N-I  E E <cos(27rh. r j,) cos(27rh, r j2)) 
jt=ij2=i 

N N 
-'- I N - I  E E <c°s[27rh" (rjt - rj2)]> 

Jl =1 j2=l 
N N 

"~- I N - i  E Y~ (cos[27rh-(rj, + rj2)] >. 
jl=lj2=l 

(17) 

To evaluate the averages, first the nature of the sta- 
tistical experiment must be established. In the classi- 
cal treatment, which is followed here, it is assumed 

that the random variables 27rh. r ( j  = 1, , N), which 
• . J " ' "  

constttute the random quantities Xlj, x2:, are uniformly l 
distributed on the unit circle in the complex plane. This 
can be achieved by (i) fixing the atomic coordinates 
(unknown but fixed) and letting the reciprocal vector 
h range uniformly through the reciprocal lattice (Karle 
& Hauptman, 1953) or (ii) fixing the reciprocal vector 
h and letting the atomic coordinates range uniformly 
through the unit cell (Heinerman, 1977). The latter sta- 
tistical experiment cannot be the basis of our treatment 
as a uniform distribution of atomic coordinates is not 
compatible with our assumption of dependency between 
the atomic coordinates. So, resorting to (i), the average 
in (17) is calculated by letting h vary uniformly through 
the reciprocal lattice. In the first term of (17), there is a 
contribution (2N)-l  to the double summation each time 
Jl =J2  (N times), otherwise the contribution is zero, 
amounting to a total contribution of N(2N)-i  - . .  If In 
the second term, there is a contribution of (2N)- to 
the double summation each time a Jl,J2 combination 
occurs for which rj, = -rj2,  i.e. for each pair of atoms 
that is centrosymmetrically arranged with respect to the 
chosen origin; if such a combination occurs then it 
occurs twice, and the contribution of such an occurrence 
is 2(2N)-l  = 1/N. If the centrosymmetric substructure 
consists of p atoms, then the contribution of the second 
term to ml20 is p/2N - A/2 ,  in which A -- p/N, 
so m20 =2~(1 + A). In the same way, it is found that 
m20 _= ( B h ~  h - -  l ( l  - A) and n i l  = 0. It Can be easily 
seen that the assumption mlo = mol = 0, applied to 
derive the formal expression (16), is still valid in the 
present case. Introduction of the values for the moments 
just established in (16) gives the expression for P(X 1 , X2) 
of A h, Bh: 

P(XI,X2) = 7r- ' (1 + A)-1/2(1 - A) -1/2 

x exp{-[X~/(1  + A)] 

- [X2/(I - A)]}. (18) 

Equation (18) is accurate up to order N-1/2; at this level 
of approximation, the information on atomic interdepen- 
dence that is needed to evaluate the expression for the 
j.p.d, is the fraction A of atoms in the centrosymmetric 
substructure; no information on the coordinates of the 
atoms in the substructure is needed. Note that 

<lEhl2> = <A2> + <B~> 

-- m20 4- m02 
_ I - l (1  - - A )  

= 1  (19) 

SO <[Eh[ 2> is independent of the degree of centricity 
around the chosen origin, as is to be expected for an 
origin-invariant quantity. 
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Table 1. Expressions for the moments of P(Xi, X2) 

Xl X2 ?r120 trio2 m i 

A h B h ½(1 + A )  ½(1-- A) 0 
Bk Bh--k {(1_ - - A )  ¼(1_ - -~ )  --~U~ -'/2(A h-At .)  
Ak Ah- k {(1 + A) g.(l' + A) ~,,' m-  ~/2¢A,,., + a~) 

_ - -  ~ N  B h A k B. k ½(I + A )  ½{I ,_.A) , - , /2  

To calculate expressions for P(X l, X2) of (B k, Bh_k), 
(Ak, An_k) , (Ak, Bh_k), respectively, we resort to a mod- 
ified statistical experiment: again, the structure is fixed 
but h is also fixed and the reciprocal vector k ranges 
uniformly through the reciprocal lattice. The calculation 
of the moments goes along the same lines as for the 
example given above. The moments are collected in 
Table 1; the corresponding j.p.d.'s can be found by 
introducing the expressions for the moments into (16). 

It is seen from Table 1 that to establish the expressions 
for P(X l , X2) of B k, Bh_ k and of A k, Ah_ k, irA h is given 
(e.g. calculated from anomalous diffraction data), not 
only knowledge about the degree of centricity around 
the chosen origin is needed but also detailed knowledge 
about the coordinates of the atoms in the centrosymmet- 
ric substructure (to calculate A~,). 

From the given expressions for m11, (6) and (7) follow 
immediately. 

3. Higher-order moments 
The probability expressions derived in the preceding 
section are restricted to the main term of each dis- 
tribution. This corresponds to a moment expansion of 
the characteristic function with moments up to order 2. 
The information on atomic dependence that is needed to 
calculate these moments appears to be purely informa- 
tion on the existence of pseudo-centrosymmetry. In this 
section, we will investigate the nature of the information 
that is needed to calculate the higher-order moments and 
thus the higher-order terms of the series expansion of 
the distributions. 

We take, as an example, the j.p.d. P(XI,X2) of 
Ak, Bh_ k. One of the third-order moments is 

m3o = (A3k)k 
N N N 

= N-3/2  E E E (cos(27rk.rj,) 
jl=l j2=l j3 =1 

x cos(2~'k" rh)cos(27rk • rj~))k 
N N N 

=(N-3/z/4) E E E E E 
e t = + l e 2 = - F l j ~ = l j 2 = l j 3 = l  

x (cos[27rk- (rj, + elrj2 + ezrj3)])k. (20) 

Contributions to m30 occur for those combinations of 
Jl, Jz, J3, el, e2 for which 

rjt + elr j2 + e2rj3 ~ 0 (mod 1). (21) 

These contributions arise if three atoms are in a special 
position relative to the chosen origin; four cases can be 
distinguished, i.e. for the four possible combinations of 
e I and e 2 (Fig. 1). All combinations involve the inter- 
action between the atomic coordinates of three atoms, 
as is imposed by (21). An example of a configuration 
that gives a number of contributions to m30 is a phenyl 
ring with the origin chosen at the centre of the ring; 
all four cases shown in Fig. l will contribute to m30. 
Counting all contributions, this adds up to 24, thus 
m30 would be equal to 6N -3/2 in this case. Note that 
m30 = 0 if no such special three-atom interactions exist• 
If the expressions for the other third-order moments are 
worked out, it appears that m03 and m21 both depend on 
(sin[27rk. (r; + elr, + eerA)]) k and are, consequently, 

• | 2 
systematically equal to zero (independent of the pres- 
ence of three-atom interactions); also, it appears that 
ml2 = -N-IAg, where A~ is the contribution to the real 
part of the structure factor originating from atoms Jl for 
which r. - cir. - e2r. - 0 (mod 1) (for any J2, J3)- 

J I  32 . 33 . 
In the same way, tt can be surmised that fourth-order 

moments will be influenced by four-atom interactions 
and, in general, nth-order moments by n-atom interac- 
tions. 

4. Discussion 
In the preceding sections, the j.p.d.'s of pairs of 
structure-factor components were derived without the 
usual assumption that the atomic contributions to 
the structure-factor components are independent. To 
compare this with the treatment in which the atomic 
contributions are assumed to be independent, we accept 
this assumption for the time being, and start with (11) 
for the characteristic function. As a consequence of the 
independent-atom assumption, the product of averages 

O r Jr 

~r,~) 

e~=+l  e2=+l  

G rj, 

e l=-- I  e2-----+l 

Q r/1 

el =+1 e 2 = - I  

(•./a 

el =-1 e2 = -I 

Fig. I. Three-atom interactions with r h + elrj2 + c2rj3 =- 0 for the 
four combinations of e I = + l ,  e 2 = 4-1. 
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can be replaced by an average over products, giving compared with 

N 

Q(tl , t2) = I-I qj(tl,t2), (22) 
j = l  

where 
qj(tl,t2) =_ (exp{i[tlxlj + t2x2j]} ) (23) 

is the characteristic function that pertains only to the 
contribution of one atom j. The next step is to expand 
qj(t l, t2) into a power series: 

OO OO b'~ 

qj(tl,t2) = 1 + y] )--]' (iv'+v2t~'tx'/Vl!Vx !) 
V I = 0  V2=0 

× my, ~'2 (J)" (24) 

In (24). ~ )-~' is a double summation over b' I and v 2 
such that 'not v~ = v 2 = 0';  the moments m,.,.2(j) 
(pertaining to one atom j)  are defined as 

IX vl ..122 \ 
m.,.2 (J) -- \ Ij ~2j ]" (25) 

As the introduction of the series expansion (24) into (22) 
results in a rather unattractive product of many series ex- 
pansions, the way one proceeds is to expand log qj(t I , t2) 
in a Taylor series (the 'cumulant expansion'); then, 

Q(tl, t2) = e x p  log qj(tl, t2) . (26) 

The result of this operation is that a product of series 
is replaced by a sum over one series (the cumulant 
expansion), which is easier to evaluate. Without going 
into the technical details, the result is again that the 
reverse Fourier transform of the cumulant expansion 
results in an expression for P(X l , X2). This expansion can 
then be transformed into one that contains moments, and 
appears to be formally identical to our expression (16) 
but now with a different definition of the moments, i.e. 

N N 

m v , , ~ 2 -  ~-]~mv, v2(J)= E I-vt-v2' , Vtlj,t2j/. (27) 
j = l  j = l  

If this definition of moments is compared with the deft- 
nition (14), i.e. the definition for the case that the atomic 
contributions are not considered to be independent, then 
it is apparent that in (14) a moment is essentially defined 
as a product o f  sums and in (27) as a sum of  products. In 
the latter, the average pertains to the contribution of one 
atom at a time; this results in the loss of interactions 
between atoms. The difference will be apparent if  we 
recalculate m20 for P(X t, X2) of A h, B h using (27): 

N 
1 m2o = N - I  E (COS2( 27rk" r j ) ) k  ~-  

j=l 

m20 = N - l  cos(27rh • r j) = ½(1 + A) 
k 

as was the result of (17). 
In our treatment, where the characteristic function Q 

is not written as a product of atomic characteristic func- 
tions, there is no way to circumvent the computational 
burden to have to multiply a great number of series 
expansions, e.g. by applying a cumulant expansion of 
log Q. If one wants to attempt to include higher-order 
terms in the expression for the j.p.d., this might require 
a considerable effort, though the effort will be mainly 
of a book-keeping nature. Without actually establishing 
the expressions for the higher-order terms, one can, 
nevertheless, foresee that they will depend on the higher- 
order moments. It was argued in §3 that moments mvtvi 
will be influenced by interactions between (v 1 + v2) 
atoms. For v I + v 2 = 2, these interactions are given 
by the condition r + r = 0 (mod 1) (the condition of 

. JJ J2 
pseuOo-centrosymmetry); they influence only the main 
term of the distribution. For v 1 + v 2 = 3, the third-order 
moments will be influenced by three-atom interactions, 
given by the condition rj + e l r ;  + e 2 r ,  = 0 ( m o d l )  
(e I = +1,  e 2 = +1); the6e third2-order ~aoments will 
affect higher-order terms of the distribution. Clearly, if  
one has no quantitative knowledge of the 2-, 3-, 4 - , . . .  
atom interactions, one has to resort to the assumption 
that the atoms are independent (and use the correspond- 
ing probability distribution). In this sense, the sparse- 
density principle, which states that the electron density 
in the crystal is so sparse that two-atom interactions 
are unlikely to occur, can be sharpened to exclude all 
interactions (meaning that interactions of any kind are 
unlikely to occur) and is thus the basis of all probability 
distributions in direct methods that are in practical use. 
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